LATER-LINE MANAGEMENT OF MCRC: INDIVIDUALIZING TREATMENT AND CARE OF PATIENTS IN THE LATER-LINE SETTING

Daniel Ahn, DO, MS
Assistant Professor, Mayo Clinic College of Medicine and Science
Mayo Cancer Center, Mayo Clinic AZ

Tanios Bekaii-Saab, MD, FACP
Professor, Mayo Clinic College of Medicine and Science
Program Leader, GI Cancer, Mayo Cancer Center,
Consultant, Mayo Clinic AZ

October 19th, 2019
DISCLOSURE

Dr. Daniel Ahn does not have any relevant financial relationships to disclose.

Dr. Tanios Bekaii-Saab has the following relevant financial relationships to disclose:

• Research Funding (to institution): Boston Biomedical, Bayer, Amgen, Merck, Celgene, Lilly, Ipsen, Clovis, Seattle Genetics, Array Biopharma, Genentech, Abgenomics, Incyte, BMS
• Consulting (to institution): Ipsen, Array Biopharma, Bayer, Genentech, Incyte and Merck
• IDMC/DSMB (to self): Astra Zeneca, Exelixis, Lilly, PanCan and 1Globe
WHAT INFLUENCES TREATMENT CHOICES IN mCRC?

- Patient characteristics
 - Comorbidities
 - Age
 - Prior adjuvant treatment
 - Performance status

- Tumor characteristics
 - Tumor burden
 - Resectability
 - Tumor location

- Molecular characteristics
 - RAS
 - BRAF
 - MSI-high
 - HER2

- Therapy tailored according to individual patient needs
 - 1L
 - 2L
 - 3L
 - 4L

- Patient preference
 - Quality of life
 - Toxicity profile

MSI-high, Microsatellite instability- high

Slide credit: clinicaloptions.com
MANY OPTIONS: HOW DO WE PERSONALIZE THERAPY?

5-FU, fluorouracil; TAS-102, trifluridine+tipiracil; BSC, best supportive care
PROPORTIONAL IMPACT ON MAGNITUDE OF OS BENEFIT ACHIEVED ACROSS LINES OF THERAPY

1 L

- **FOLFIRI ± cetuximab**
 - Median OS improvement: 0.8 months
 - Not for RAS MT

- **FOLFOX4 ± panitumumab**
 - Median OS improvement: 0.83 months

- **FOLFIRI or FOLFOX/XELOX ± bevacizumab**
 - Median OS improvement: 0.89 months

2 L

- **FOLFOX ± bevacizumab**
 - Median OS improvement: 0.75 months

- **FOLFIRI ± panitumumab**
 - Median OS improvement: 0.85 months
 - Not for RAS MT

- **CT ± continued bevacizumab**
 - Median OS improvement: 0.81 months

- **FOLFIRI ± aflibercept**
 - Median OS improvement: 0.82 months

3/4 L

- **Regorafenib vs placebo**
 - Median OS improvement: 0.77 months

- **TAS102 vs placebo**
 - Median OS improvement: 0.68 months

HR for OS

- **FOLFIRI or FOLFOX/XELOX ± bevacizumab**
 - HR for OS: 0.81

References

Median OS improvement, months

- **FOLFIRI or FOLFOX/XELOX ± bevacizumab**
 - Median OS improvement: 0.81 months

- **TAS102 vs placebo**
 - Median OS improvement: 0.77 months

HR for OS

- **FOLFIRI or FOLFOX/XELOX ± bevacizumab**
 - HR for OS: 0.81

CT, chemotherapy; HR, hazard ratio; OS, overall survival; L, line of therapy; MT, mutation; TAS-102, trifluridine+tipiracil; WT, wild type.

a KRAS WT subset; P value = significant.

b KRAS WT subset; P value = not significant.
RAS WT MSS MCRC : DOES ANATOMICAL SIDE MATTER?
MSI, microsatellite instability; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; PTEN, phoshatase and tensin homolog; APC, adenomatous polyposis coli; TP53, tumor protein 53

Source: © 2017 The Ruesch Center for the Cure of GI Cancers

MSI, microsatellite instability; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; PTEN, phosphatase and tensin homolog; APC, adenomatous polyposis coli; TP53, tumor protein 53
CALGB/SWOG 80405: CHEMO + BEV OR CETUX - OS BY TUMOR LOCATION (RAS WT)

<table>
<thead>
<tr>
<th></th>
<th>Median OS (months)</th>
<th>HR (95% CI)</th>
<th>P Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Cetux (n=173 vs 71)</td>
<td>39.3</td>
<td>13.6</td>
<td>1.82 (1.27-2.56)</td>
</tr>
<tr>
<td>Bev (n=152 vs 78)</td>
<td>32.6 (28.3-36.2)</td>
<td>29.2 (22.4-36.9)</td>
<td>1.14 (0.80-1.61)</td>
</tr>
</tbody>
</table>

BEV, bevacizumab; CETUX, cetuximab; CHEMO, chemotherapy; OS, overall survival; HR, hazard ratio; WT, wild type

*Adjusted for treatment arm, protocol chemotherapy, prior adjuvant therapy, prior radiotherapy, age, sex, synchronous disease, in place primary, liver metastases
PRIMARY TUMOR LOCATION AND POTENTIAL TREATMENTS

Right-sided
- Anti-PD1
- MSI-H
- Bev + Triplet CT
- ↑ KRAS MT
- Bevacizumab + CT
- Anti-EGFRs + CT

Left-sided
- HER2+
- HER2-targeted agents
- ↑ KRAS WT
- ↑ AREG/EREG

AREG/EREG, Amphiregulin/Epiregulin; Bev, bevacizumab; CT, chemotherapy; EGFR, Epidermal growth factor receptor; MSI-H, microsatellite instability high; MT, mutation; PD1, Programmed cell death 1; WT, wild type
GENOTYPE-SPECIFIC COLORECTAL CANCER SUBPOPULATION
HERACLES: TRASTUZUMAB + LAPATINIB

- Proof of concept, open-label phase 2 trial aimed to assess the activity of trastuzumab+lapatinib in patients with HER2-positive, KRAS exon 2 WT mCRC after failure of standard therapies

- Primary endpoint: proportion of patients achieving an objective response (complete or partial response)
 - 30% patients achieved an objective response

- Trastuzumab + lapatinib= active and well tolerated in treatment refractory patients with HER2-positive mCRC

mCRC, metastatic colorectal cancer; WT, wild type
HERACLES: TRASTUZUMAB + LAPATINIB

- Best tumor response of patients treated with trastuzumab+lapatinib (A) and dynamics of response in 25 patients with HER2-positive tumours assessed with CT scans until disease progression (B)

CT, computerized tomography
ANTI-HER2 CLINICAL TRIALS IN PATIENTS WITH REFRACTORY HER2+ mCRC

<table>
<thead>
<tr>
<th>Clinical Trial</th>
<th>Therapies</th>
<th>Patients HER2-positive mCRC (N)</th>
<th>Response Rate</th>
<th>TTP/PFS (median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HERACLES</td>
<td>Lapatinib + Trastuzumab</td>
<td>27</td>
<td>30%</td>
<td>4.9 months</td>
</tr>
<tr>
<td>MyPathway</td>
<td>Pertuzumab + Trastuzumab</td>
<td>37</td>
<td>38%</td>
<td>2.9 months</td>
</tr>
</tbody>
</table>

mCRC, metastatic colorectal cancer; PFS, progression-free survival; TTP, time to progression;
HERACLES-B (open-label phase II trial in RAS/BRAF wild-type HER2+ mCRCs) Cohort-B initiated following the results from HERACLES-A study

- **Endpoints**: ORR and Progression-Free Survival (PFS)
- **Main inclusion criteria**: ECOG PS 0-1, progression after 5FU, oxaliplatin, irinotecan, and anti-EGFR containing regimens.
- **Results**:
 - ORR = 10% [95% CI: 0-28]
 - Median PFS = 4.8 months. [95% CI: 3.6-5.8].
 - Higher HER2 IHC score (3+ vs 2+) associated with objective response ≥4 months. [p = 0.03]
- **Conclusion**:
 - HERACLES-B did not reach its primary endpoint
 - Disease control was achieved in 80% of patients with a median PFS of 4.8 months that is superimposable to the 4.2 months achieved in the positive HERACLES-A trial

5-FU, fluorouracil; CI, confidence interval; ECOG PS, Eastern Cooperative Oncology Group - performance Status; mCRC, metastatic colorectal cancer; ORR, objective response rate; PFS, progression-free survival; TTP, time to progression

MOUNTAINEER study (a multicenter open-label single-arm phase II trial): Patients with RAS WT HER2+ mCRCs

Pts received tucatinib 300mg PO bid and standard doses of trastuzumab (IV, Q3 weeks).

- **Endpoints:** ORR

- **Main criteria:** Prior treatment with 5FU, oxaliplatin, irinotecan, and an anti-VEGF antibody was required. Prior anti-HER2 therapy was excluded.

- **Results:** (22 evaluable patients)
 - ORR= 55% (CR/PR= 12; SD = 5; PD = 5).
 - Clinical benefit rate (CR+PR+SD≥4 months) = 64%.
 - At a median follow-up of 10.6 months, median PFS= 6.2 months (95% CI 3.5-NE).
 - Median OS = 17.3 months (95% CI 12.3-NE).
 - There were 2 (9%) grade 3 TRAEs and no grade 4/5 TRAEs.

- **Conclusion:**
 - The combination of tucatinib and trastuzumab is well tolerated and has met its primary efficacy endpoint.
TRIUMPH study (Phase II trial)/GOZILA sub-study: Patients with central tissue and/or ctDNA confirmed wild-type RAS and HER2+ mCRC.

Patients received trastuzumab and pertuzumab

- **Endpoints:** Confirmed ORR by investigator assessment, analyzed for two primary populations: tissue-positive and ctDNA-positive

- **Results:** (median follow up : 5.4 months)
 - 6 confirmed responders in the tissue-positive group (ORR = 35%, 95% CI 14-62%; 1 CR and 5 PR) and 5 in the ctDNA positive group (ORR = 33%, 95% CI 12-62%; 1 CR and 4 PR).
 - Median progression-free survival for both groups was 4.0 months (95% CI = 1.4-5.6 months and 1.3-5.6 months, respectively).

- **Conclusion:**
 - The combination of tucatinib and trastuzumab is well tolerated and has met its primary efficacy endpoint.
COLOMATE TRIAL (ACCRU)

- **Metastatic CRC**
- **Prior treatment with a fluoropyrimidine, oxaliplatin, irinotecan, and anti-VEGF monoclonal antibody (bevacizumab, ramucirumab, or ziv-aflibercept)**

Note: this is a preliminary list of targets
- Targets to change based on available science and drug development opportunities

- Tucatinib + Trastuzumab

ctDNA/ tissue screening
- **ctDNA/ tissue screening** (n~ 1000)

- Absence of acquired KRAS, NRAS, BRAF, EGFR mutation or ERRB2/MET amplification**
 - EGFR rechallenge
 - N= 75 (15%)

- HER2 amplified
 - Anti-HER2
 - N= 25 (5%)

- MET amplified
 - Anti-MET
 - N= 75 (15%)

- EGFR mutation
 - Anti-EGFR
 - N= 50 (10%)

- FGFR
 - Anti-FGFR
 - N= 30 (?) (5%)

- No actionable change
 - SOC
 - N= 320 (65%)

Primary endpoint: ORR by RECIST v1.1

Secondary endpoints: PFS, duration of response, OS, QOL, safety and tolerability

- Other cohorts/ arms encouraged
- Each arm to have a junior/senior investigator leadership team
- Flexible design: arms open and close with best available science

Tucatinib + Trastuzumab

ACCRU, Academic and Community Cancer Research United; COLOMATE, Colorectal and Liquid Biopsy Molecularly Assigned Therapy; ctDNA, Circulating tumor DNA; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; QOL, quality of life; RECIST, Response evaluation criteria in solid tumors

ClinicalTrials.gov, NCT03043313

* Patients may be eligible for assignment to a treatment arm based on FFPE tumor tissue testing or blood-based testing.

** In patients who have received prior anti-EGFR therapy.
HER2 AMPLIFICATION AS A NEGATIVE PREDICTIVE BIOMARKER FOR ANTI-EGFRS: OUTCOMES

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>HER2 Amp</th>
<th>HER2NA</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS – Cohort 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-EGFR based therapy in 2L/3L</td>
<td>2.9</td>
<td>8.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Median PFS, months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non anti-EGFR based therapy in 1L</td>
<td>9.7</td>
<td>10.1</td>
<td>0.848</td>
</tr>
<tr>
<td>Median PFS, months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFS – Cohort 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-EGFR based therapy in 2L/3L</td>
<td>2.8</td>
<td>9.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Median PFS, months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non anti-EGFR based therapy in 1L</td>
<td>13.7</td>
<td>11.3</td>
<td><0.616</td>
</tr>
<tr>
<td>Median PFS, months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS - Cohort 1 and 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohort 1</td>
<td>1.13 (0.5-2.3)</td>
<td></td>
<td>0.78</td>
</tr>
<tr>
<td>median OS, HR (95% CI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohort 2</td>
<td>1.09 (0.4-2.7)</td>
<td></td>
<td>0.86</td>
</tr>
<tr>
<td>median OS, HR (95% CI)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1L/2L/3L, first line/second line/third line treatment; CI; confidence intervals; EGFRS, anti-epidermal growth factor receptors; HER2 Amp, HER2 amplification: HER2NA, HER2 non-amplified; HR, hazard ratio; PFS, progression-free survival; OS; overall survival

Raghav KPS, et al. Poster. ASCO. 2016 (abstr 3517)
PFS AND OS IN BRAF MUT CRC PATIENTS TREATED WITH EGFR mABS

OS

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>log[Hazard Ratio]</th>
<th>SE</th>
<th>Weight</th>
<th>Hazard Ratio IV, Random, 95% CI Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bokemeyer 2012</td>
<td>-0.478</td>
<td>0.275</td>
<td>20.7%</td>
<td>0.62 [0.36, 1.06] 2012</td>
</tr>
<tr>
<td>Douillard 2013</td>
<td>-0.105</td>
<td>0.342</td>
<td>17.0%</td>
<td>0.90 [0.46, 1.76] 2013</td>
</tr>
<tr>
<td>Karapetis 2013</td>
<td>-0.174</td>
<td>0.736</td>
<td>6.0%</td>
<td>0.84 [0.20, 3.56] 2013</td>
</tr>
<tr>
<td>Seymour 2013</td>
<td>0.61</td>
<td>0.263</td>
<td>21.5%</td>
<td>1.84 [1.10, 3.08] 2013</td>
</tr>
<tr>
<td>Peeters 2014</td>
<td>-0.446</td>
<td>0.354</td>
<td>16.4%</td>
<td>0.64 [0.32, 1.28] 2014</td>
</tr>
<tr>
<td>Stintzing 2014</td>
<td>-0.139</td>
<td>0.314</td>
<td>18.5%</td>
<td>0.87 [0.47, 1.61] 2014</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>0.91 [0.62, 1.34] 2014</td>
</tr>
</tbody>
</table>

Heterogeneity: $\tau^2 = 0.11; \chi^2 = 10.09, df = 5 (P = 0.07); I^2 = 50\%$

Test for overall effect: $Z = 0.48 (P = 0.63)$

PFS

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>log[Hazard Ratio]</th>
<th>SE</th>
<th>Weight</th>
<th>Hazard Ratio IV, Random, 95% CI Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bokemeyer 2012</td>
<td>-0.4</td>
<td>0.34</td>
<td>12.6%</td>
<td>0.67 [0.34, 1.31] 2012</td>
</tr>
<tr>
<td>Peeters 2013</td>
<td>-1.079</td>
<td>0.669</td>
<td>3.8%</td>
<td>0.34 [0.09, 1.26] 2013</td>
</tr>
<tr>
<td>Seymour 2013</td>
<td>0.336</td>
<td>0.273</td>
<td>17.5%</td>
<td>1.40 [0.82, 2.39] 2013</td>
</tr>
<tr>
<td>Douillard 2013</td>
<td>-0.545</td>
<td>0.351</td>
<td>12.0%</td>
<td>0.58 [0.29, 1.15] 2013</td>
</tr>
<tr>
<td>Smith 2013</td>
<td>0.131</td>
<td>0.207</td>
<td>25.1%</td>
<td>1.14 [0.76, 1.71] 2013</td>
</tr>
<tr>
<td>Karapetis 2013</td>
<td>-0.274</td>
<td>0.711</td>
<td>3.4%</td>
<td>0.76 [0.19, 3.06] 2013</td>
</tr>
<tr>
<td>Peeters 2014</td>
<td>-0.371</td>
<td>0.392</td>
<td>10.0%</td>
<td>0.69 [0.32, 1.49] 2014</td>
</tr>
<tr>
<td>Stintzing 2014</td>
<td>-0.139</td>
<td>0.297</td>
<td>15.5%</td>
<td>0.87 [0.49, 1.56] 2014</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>0.88 [0.67, 1.14] 2014</td>
</tr>
</tbody>
</table>

Heterogeneity: $\tau^2 = 0.03; \chi^2 = 8.88, df = 7 (P = 0.26); I^2 = 21\%$

Test for overall effect: $Z = 0.98 (P = 0.33)$

EGFR mABs did not increase the benefit of standard therapy or BSC in BRAF-mut CRC patients.

9 Phase III trials
1 Phase II trial
→ 463 patients

BSC, best supportive care; CRC, colorectal cancer; mABs, monoclonal antibodies; MUT, mutant; OS; overall survival; PFS, progression-free survival

PATIENTS WITH BRAF-MUTANT COLORECTAL CANCER: FUTURE TREATMENT PATHWAYS

Current therapeutic approaches

- Good performance status
 - FOLFOXIRI + bevacizumab
 - FOLFOX/XELOX or FOLFIRI + bevacizumab
 - Irinotecan + cetuximab + vemurafenib
 - Consideration of clinical trial

- Advanced age or impaired performance status
 - Capecitabine or fluorouracil/LV + bevacizumab
 - FOLFOX/XELOX or FOLFIRI + bevacizumab
 - Irinotecan + cetuximab + vemurafenib
 - Consider dose modification for combination therapy
 - Consideration of clinical trial

Future Approaches

- Targeted therapy combinations
 - EGFR + BRAF inhibition?
 - Triplet BRAF + MEK + EGFR inhibition?
 - Triplet BRAF + EGFR + PI3K inhibition?

EGFR, Epidermal growth factor receptor; FOLFOX, 5-fluorouracil+leucovorin+oxaliplatin; FOLFIRI, 5-fluorouracil+leucovorin+irinotecan; FOLFOXIRI, 5-fluorouracil+leucovorin+irinotecan+oxaliplatin; LV, leucovorin; MEK, mitogen-activated kinase; PI3K, Phosphoinositide 3-kinase; XELOX, capecitabine+leucovorin+oxaliplatin

BEACON CRC: SAFETY LEAD-IN

EFFICACY RESULTS IN 29* PATIENTS WITH BRAFV600E mCRC

• Median time on study treatment was 7.9 months (range, 1.0–11.9 months)

<table>
<thead>
<tr>
<th>Best Overall Response, n (%) (per local assessment)</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total (n=29)</td>
</tr>
<tr>
<td>ORR (CR + PR)</td>
<td>14 (48)</td>
</tr>
<tr>
<td>CR</td>
<td>3 (10)</td>
</tr>
<tr>
<td>PR</td>
<td>11 (38)</td>
</tr>
<tr>
<td>SD</td>
<td>13 (45)</td>
</tr>
<tr>
<td>PD</td>
<td>0</td>
</tr>
<tr>
<td>Not evaluable for response</td>
<td>2 (7)</td>
</tr>
</tbody>
</table>

• Preliminary estimate of median PFS is 8.0 months (95% CI, 5.6–9.3 months), with 6 of 30 patients (20%) still in follow-up and progression-free (as of Sep 2, 2018)
 – mPFS similar between patients who had 1 vs 2 previous regimens:
 8.0 months (95% CI, 5.6–9.6) vs 7.7 months (95% CI, 4.1–10.8) respectively

CI, confidence intervals; CR, complete response; mCRC, metastatic colorectal; mPFS, median progression-free survival; ORR, objective response rate; PFS, progression-free survival; PD, progression disease; PR, partial response; SD, stable disease;

*Thirty patients were enrolled in the safety lead-in BEACON study. One patient had a non-V600 mutation of BRAF (kept in safety analysis but excluded in efficacy analysis)

EFFICACY RESULTS IN 29* PATIENTS WITH BRAFV600E mCRC

- Kaplan-Meier plots of (A) PFS (local assessment) and (B) OS.

CI, confidence intervals; NR, not reached; OS, overall survival; PFS, progression-free survival;

*Thirty patients were enrolled in the safety lead-in BEACON study. One patient had a non-V600 mutation of BRAF (kept in safety analysis but excluded in efficacy analysis). Van Cutsem E, et al. J Clin Oncol, 2019;37(17):1460-1469
A combination of encorafenib, cetuximab, and binimetinib resulted in significantly longer overall survival and a higher response rate than standard therapy in patients with mCRC with the *BRAF* V600E mutation.

CI, confidence interval; mCRC, metastatic colorectal cancer; OS, overall survival
BEACON CRC: SECONDARY ENDPOINTS

TRIPLET VS DOUBLET: RESULTS AND CONCLUSIONS

<table>
<thead>
<tr>
<th></th>
<th>Triplet therapy (n=224)</th>
<th>Doublet therapy (n=220)</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median OS, months (95% CI)</td>
<td>9.0 (8.0-11.4)</td>
<td>8.4 (7.5-11.0)</td>
<td>0.79 (0.59-1.06)</td>
</tr>
<tr>
<td>Overall response rate, % (95% CI)</td>
<td>26 (18-35)</td>
<td>20 (13-29)</td>
<td>–</td>
</tr>
<tr>
<td>Patients with one prior therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORR, % (95% CI)</td>
<td>34 (23-47)</td>
<td>22 (14-33)</td>
<td>–</td>
</tr>
<tr>
<td>Grade ≥3 adverse events, %</td>
<td>58</td>
<td>50</td>
<td>–</td>
</tr>
<tr>
<td>Rate of discontinuation, %</td>
<td>7</td>
<td>8</td>
<td>–</td>
</tr>
</tbody>
</table>

There were no differences in QoL across all used instruments

Median follow up: 7.8 months

→ Triplet therapy compared to doublet therapy has some improved efficacy with a modest increase in toxicities and no detrimental effect in QoL

CI, confidence interval; HR, hazard ratio; OS, overall survival; ORR, objective response rate; QoL, quality of life
EFFICACY OF LAROTRECTINIB IN TRK FUSION–POSITIVE CANCERS

Expanded cohort with 98 new NTRK gene fusions positive patients treated with larotrectinib

Primary endpoint
Best objective response rate (ORR)
RECIST v1.1 per investigator assessment

Secondary endpoints:
Duration of response
Progression-free survival
Safety

Dosing:
Larotrectinib 100mg BID predominantly

Data cut-off: 19 February 2019

NCT02122913: Phase I dose escalation study in adult with advanced solid tumours

SCOUT: NCT02637687:
Phase I/II dose escalation study in paediatric with advanced solid tumours

NAVIGATE: NCT02576431:
Phase II, open-label, basket study in adult/adolescent with advanced solid tumours and TRK fusion positive

BID, twice a day; NTRK, neurotrophic tyrosine receptor kinase; ORR, overall response rate; TRK, tropomyosin receptor kinase

One patient (asterisk) had a tropomyosin receptor kinase (TRK) solvent front resistance mutation (NTRK3 G623R) at baseline owing to previous therapy.
One patient (dagger) had a pathological complete response.
Note: Data for 1 patient are not shown; the patient had clinical deterioration and no tumor measurements after baseline were recorded.
One patient (double dagger) had a missing restaging scan after the confirmed response was established, and progression-free survival was censored at 3.7 months.

mo, months; TRK, tropomyosin receptor kinase

EFFICACY OF LAROTRECTORINIB IN TRK FUSION-POSITIVE CANCERS

In the primary cohort of 55 patients
- Median follow-up = 26 months (Data cut-off: 19 February 2019)
- The median DOR in 44 patients with complete or partial responses was 35.2 months (95% CI 21.2–NE), with 17 progression events and 27 responses ongoing (range 1.6–44 months).
- The median PFS in the primary cohort was 25.8 months (95% CI 9.9–NE), with 27 patients having progressed

In the expanded combined dataset of 153 patients
- The most common tumor types= soft tissue sarcoma (n = 36), infantile fibrosarcoma (n = 29), thyroid carcinoma (n = 26), salivary gland carcinoma (n = 21), and lung cancer (n = 12).
- The overall ORR = 79% (95% CI 72–85), with complete responses in 16%
- Adverse events were primarily grade 1-2, with 13% of patients having had a grade 3-4 event related to larotrectinib.
- Only one patient discontinued due to an AE related to larotrectinib.

AE, adverse event; CI, confidence interval; DOR, duration of response; NE, not estimated; NTRK, neurotrophic tyrosine receptor kinase; ORR, overall survival rate; PFS, progression-free survival

REGORAFENIB DOSE-OPTIMISATION IN PATIENTS WITH REFRACTORY METASTATIC COLORECTAL CANCER (ReDOS): A RANDOMISED, MULTICENTRE, OPEN-LABEL, PHASE 2 STUDY

ReDOS DESIGN

Randomization: Two distinct regorafenib dosing strategies: dose escalation (**arm A**) vs standard dose (**arm B**) + clobetasol usage (pre-emptive (1*) vs reactive (2*))

Primary endpoint: Proportion of patients who completed 2 cycles of treatment and initiated cycle 3 in arm A and arm B

Secondary endpoints: OS, PFS, TTP, cumulative dose and dose intensity received within the first 2 cycles, proportion who exhibited grade 3 PPES or fatigue, and QoL

Dose escalation strategy

<table>
<thead>
<tr>
<th>WEEK</th>
<th>C1 schedule</th>
<th>DOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>w1</td>
<td>Starting dose C1</td>
<td>80 mg</td>
</tr>
<tr>
<td>w2</td>
<td>↓</td>
<td>120 mg</td>
</tr>
<tr>
<td>w3</td>
<td>End dose C1</td>
<td>160 mg</td>
</tr>
<tr>
<td>w4</td>
<td></td>
<td>off</td>
</tr>
</tbody>
</table>

DOSE WEEK of C2+

| w1 | Dose from C1 |

See the dose escalation strategy table for dosing regimen

Randomization

1:1:1:1

(Progression on previous standard therapy, including EGFRi if KRAS WT; ECOG PS 0-1)

Arm A

- **Arm A 1**: Regorafenib
 - Start low dose*
 - + pre-emptive strategy for PPES

Arm A 2: Regorafenib
- Start low dose*
- + reactive strategy for PPES

Arm B

- **Arm B 1**: Regorafenib 160 mg
 - PO daily for 21 days of 28-day cycle
 - + pre-emptive strategy for PPES

Arm B 2: Regorafenib 160 mg
- PO daily for 21 days of 28-day cycle
- + reactive strategy for PPES

C1, cycle 1; C2+, cycle 2 and more; ECOG PS, Eastern Cooperative Oncology Group - performance Status; EGFRi; Epidermal growth factor receptor inhibitor; OS, overall survival; QoL, quality of life; PFS, progression-free survival; PO, oral administration (per os); PPES, Palmar-plantar erythrodysesthesia syndrome; TTP, time to progression, w1, week 1

ReDOS: PATIENT SELECTION CRITERIA

ReDOS main eligibility criteria
- ECOG ≤1
- Acceptable organ and none marrow function
- Failure of all standard intravenous regimens, including appropriate biologics

ReDOS relevant exclusion criteria
- Prior treatment with regorafenib
- History of contact dermatitis with:
 - clobetasol propionate or similarly fluorinated steroids
 - steroids with the propionate ester

Patients ≥18 years with histologically or cytologically confirmed advanced or metastatic CRC that was refractory to previous standard therapy

ECOG, Eastern Cooperative Oncology Group; mCRC, metastatic colorectal cancer
Primary endpoint: proportion of patients who completed 2 cycles of treatment and who initiated Cycle 3

Assuming an 8-week planned continuation rate of 45% in the standard dose (Arm B) group, and desiring an improvement to 63% (+18%) in the dose escalation (Arm A) group, a one-sided test with alpha = 0.20 and power of 80% would require a sample size of 110 patients (55 patients per group)

The primary endpoint was calculated with asymptotic Wald 95% CIs, with a one-sided Fisher’s exact test used to detect a difference between groups

Cis, confidence intervals; Bekaii-Saab TS, et.al. Lancet Oncol 2019; 20(8):1070-1082
PATIENT DEMOGRAPHICS

<table>
<thead>
<tr>
<th>Characteristic, n (%)</th>
<th>Dose escalation group - Arm A (n=54)</th>
<th>Standard dose group - Arm B (n=62)</th>
<th>Total (n=116)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age Median (IQR)</td>
<td>62 (53-68)</td>
<td>61 (53-68)</td>
<td>61 (53-68)</td>
<td>0.9010</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td>0.2601</td>
</tr>
<tr>
<td>Female</td>
<td>18 (33%)</td>
<td>27 (44%)</td>
<td>45 (39%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>36 (67%)</td>
<td>35 (56%)</td>
<td>71 (61%)</td>
<td></td>
</tr>
<tr>
<td>ECOG PS</td>
<td></td>
<td></td>
<td></td>
<td>0.9947</td>
</tr>
<tr>
<td>0</td>
<td>20 (37%)</td>
<td>23 (37%)</td>
<td>43 (37%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>34 (63%)</td>
<td>39 (63%)</td>
<td>73 (63%)</td>
<td></td>
</tr>
<tr>
<td>Primary tumor status</td>
<td></td>
<td></td>
<td></td>
<td>0.3015</td>
</tr>
<tr>
<td>Local recurrence</td>
<td>4 (7%)</td>
<td>1 (2%)</td>
<td>5 (4%)</td>
<td></td>
</tr>
<tr>
<td>Resected</td>
<td>37 (69%)</td>
<td>44 (71%)</td>
<td>81 (70%)</td>
<td></td>
</tr>
<tr>
<td>Unresected</td>
<td>13 (24%)</td>
<td>17 (27%)</td>
<td>30 (26%)</td>
<td></td>
</tr>
<tr>
<td>Number of metastatic sites</td>
<td></td>
<td></td>
<td></td>
<td>0.2096</td>
</tr>
<tr>
<td>1</td>
<td>6 (11%)</td>
<td>2 (3%)</td>
<td>8 (7%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12 (22%)</td>
<td>18 (29%)</td>
<td>30 (26%)</td>
<td></td>
</tr>
<tr>
<td>3+</td>
<td>36 (67%)</td>
<td>42 (68%)</td>
<td>78 (67%)</td>
<td></td>
</tr>
<tr>
<td>BRAF mutation status</td>
<td></td>
<td></td>
<td></td>
<td>0.7485</td>
</tr>
<tr>
<td>Mutated</td>
<td>0</td>
<td>2 (3%)</td>
<td>2 (2%)</td>
<td></td>
</tr>
<tr>
<td>Wild Type</td>
<td>17 (31%)</td>
<td>20 (32%)</td>
<td>37 (32%)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>37 (69%)</td>
<td>40 (65%)</td>
<td>77 (66%)</td>
<td></td>
</tr>
<tr>
<td>KRAS mutation status</td>
<td></td>
<td></td>
<td></td>
<td>0.1486</td>
</tr>
<tr>
<td>Mutated</td>
<td>21 (39%)</td>
<td>34 (55%)</td>
<td>55 (47%)</td>
<td></td>
</tr>
<tr>
<td>Wild Type</td>
<td>31 (57%)</td>
<td>27 (44%)</td>
<td>58 (50%)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>2 (4%)</td>
<td>1 (2%)</td>
<td>3 (3%)</td>
<td></td>
</tr>
</tbody>
</table>

ECOG PS, Eastern Cooperative Oncology Group – performance status; IQR, interquartile range
PHASE II ReDOS STUDY: PERCENTAGE OF PATIENTS STARTING CYCLE 3 (PRIMARY ENDPOINT)

PRIMARY ENDPOINT MET

Fisher's exact test (1-sided)

- **Arm A (Escalating dose)**: 37% PD, P = 0.043
- **Arm B (Standard dose)**: 47% PD

PD, progressive disease

Fisher’s exact test (1-sided)
PHASE II ReDOS STUDY: OS (SECONDARY ENDPOINT)

<table>
<thead>
<tr>
<th>Group</th>
<th>Median OS</th>
<th>HR & p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm A (dose escalation)</td>
<td>9.8 months</td>
<td>0.72, 95% CI 0.47-1.10 p=0.12</td>
</tr>
<tr>
<td>Arm B (standard dose)</td>
<td>6.0 months</td>
<td></td>
</tr>
</tbody>
</table>

CI, confidence interval; HR, hazard ratio; OS, overall survival.
OS IN ReDOS AND CORRECT

<table>
<thead>
<tr>
<th>ReDOS study</th>
<th>Median OS (95% CI)</th>
<th>HR & p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bekaii-Saab TS, et al. 2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arm A (dose escalation group, n=54)</td>
<td>9.8 months (7.5-11.9)</td>
<td>0.72, 95% CI 0.47-1.10</td>
</tr>
<tr>
<td>Arm B (standard dose group, n=62)</td>
<td>6.0 months (4.9-10.2)</td>
<td>p=0.12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CORRECT study</th>
<th>Median OS (IQR)</th>
<th>HR & p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard dose group (regorafenib 160 mg, n=505)</td>
<td>6.4 months (3.6-11.8)</td>
<td>0.77, 95% CI 0.64-0.94 p=0.0052</td>
</tr>
<tr>
<td>Placebo group (n=255)</td>
<td>5.0 months (2.8-10.4)</td>
<td></td>
</tr>
</tbody>
</table>

CI, confidence interval; HR, hazard ratio; IQR, interquartile range; OS, overall survival.

OS in patients who initiated cycle 3:

- 17 events in 23 patients in the dose-escalation group vs
- 5 events in 16 patients in the standard-dose group

→ No significant differences observed in overall survival

OS, overall survival.
SENSITIVITY ANALYSIS FOR EFFECT OF KRAS MUTATION STATUS ON OS

• The proportion of patients with a KRAS-mutant tumor was lower in escalating dose group; arm A (39%) compared with standard dose group: arm B (55%). There was a concern whether it impacted OS.

• A proportional hazard model was used to perform an adjusted post-hoc analysis. The time-to-event variable was OS and the variables included in the model were arms (arm A vs B) and KRAS mutation status (wild-type vs mutant). The adjusted hazard ratio of OS for arm A vs arm B was 0.742 (95% CI 0.478–1.151; p=0.18). The KRAS variable was not a significant covariate (p=0.95).

→ KRAS mutation did not appear to affect overall survival
PHASE II ReDOS STUDY: PFS (SECONDARY ENDPOINT)

<table>
<thead>
<tr>
<th>Group</th>
<th>Median PFS</th>
<th>HR & p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm A (dose escalation)</td>
<td>2.8 months</td>
<td>0.84, 95% CI 0.57-1.24, p=0.38</td>
</tr>
<tr>
<td>Arm B (standard dose)</td>
<td>2.0 months</td>
<td></td>
</tr>
</tbody>
</table>

HR, hazard ratio; PFS, progression-free survival.
PHASE II ReDOS STUDY: OVERALL QoL (SECONDARY ENDPOINT)

LASA=Linear Analogue Self-Assessment; QoL, quality of life.
<table>
<thead>
<tr>
<th>n (%)</th>
<th>Dose escalation group (n=54)</th>
<th>Standard dose group (n=62)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 3</td>
<td>Grade 4</td>
</tr>
<tr>
<td>Fatigue</td>
<td>7 (13%)</td>
<td>0</td>
</tr>
<tr>
<td>Hand-foot skin reaction</td>
<td>8 (15%)</td>
<td>0</td>
</tr>
<tr>
<td>Hypertension</td>
<td>4 (7%)</td>
<td>0</td>
</tr>
<tr>
<td>Rash maculopapular</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Blood bilirubin increased</td>
<td>2 (4%)</td>
<td>0</td>
</tr>
<tr>
<td>Aspartate aminotransferase increased</td>
<td>1 (2%)</td>
<td>0</td>
</tr>
<tr>
<td>Alkaline phosphatase increased</td>
<td>3 (6%)</td>
<td>0</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>9 (17%)</td>
<td>0</td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>1 (2%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Hyponatremia</td>
<td>2 (4%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Lymphocyte count decreased</td>
<td>4 (7%)</td>
<td>0</td>
</tr>
<tr>
<td>Dehydration</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neoplasms: benign, malignant, unspecified, other (specified)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Colonic obstruction</td>
<td>3 (6%)</td>
<td>0</td>
</tr>
</tbody>
</table>

AEs, adverse events

Note: in bold grade 3 adverse events commonly associated with regorafenib treatment
PHASE II ReDOS STUDY: SWIMMER PLOT OF DOSING HISTORY

Regorafenib dose escalation group (n=54)

PHASE II ReDOS STUDY: SWIMMER PLOT OF DOSING HISTORY

Regorafenib standard dose group (n=62)

A SYSTEMATIC REVIEW AND NETWORK META-ANALYSIS OF REGORAFENIB AND TAS-102 IN REFRACTORY mCRC

Regorafenib 160 mg and TAS-102 appear to have similar efficacy in refractory metastatic colorectal cancer

A dose escalation strategy of regorafenib (Rego 80 mg) is superior to BSC

A trend for improved OS was observed with dose escalation strategy (Rego 80 mg) vs. Rego 160 mg or TAS 102

<table>
<thead>
<tr>
<th>Network meta-analysis for OS and PFS</th>
<th>HR, 95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rego 80 mg vs. BSC</td>
<td>OS: 0.44, 0.23-0.84 PFS: 0.37, 0.21-0.65</td>
<td>0.01 0.001</td>
</tr>
<tr>
<td>Rego 80 mg vs. Rego 160 mg</td>
<td>OS: 0.65, 0.36-1.15 PFS: 0.89, 0.54-1.45</td>
<td>0.14 0.71</td>
</tr>
<tr>
<td>Rego 80 mg vs. TAS-102</td>
<td>OS: 0.65, 0.33-1.27 PFS: 0.83, 0.45-1.52</td>
<td>0.21 0.55</td>
</tr>
<tr>
<td>Rego 160 mg vs. TAS-102</td>
<td>OS: 1.00, 0.72-1.41 PFS: 0.93, 0.66-1.32</td>
<td>0.95 0.71</td>
</tr>
<tr>
<td>Rego 160 mg vs. BSC</td>
<td>OS: 0.67, 0.48-0.93 PFS: 0.40, 0.26-0.63</td>
<td>0.02 <0.0001</td>
</tr>
<tr>
<td>TAS-102 vs. BSC</td>
<td>OS: 0.67, 0.57-0.80 PFS: 0.46, 0.40-0.52</td>
<td><0.00001 <0.001</td>
</tr>
</tbody>
</table>

BSC, best supportive care; CI, confidence interval; mCRC, metastatic colorectal cancer OS, overall survival; PFS, progression-free survival; rego, regorafenib

Treatment is predicated on therapies the patient received or is intolerant to in prior lines. NCCN has recently incorporated tumor location ("sidedness") into the guidelines for first-line therapy options and recommends anti-EGFR therapy in patients with RAS WT mCRC with left-sided tumors only.

Regorafenib should be considered as soon as the patient has been treated with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy, an anti-VEGF therapy, and an anti-EGFR therapy (if RAS WT).

*Biologic = bevacizumab, or cetuximab or panitumumab (RAS WT only).
**Single agent panitumumab or cetuximab in patients intolerant to irinotecan.
***if no previous treatment with a checkpoint inhibitor
PHASE II ReDOS STUDY: CONCLUSIONS

• A strategy with weekly dose escalation of regorafenib from 80 mg/day to 160 mg/day was found to be superior to a starting dose of 160 mg/day

• A trend for improved OS was seen in the dose escalation group (the difference for OS between the two groups was not statistically significance)

• At 2-weeks from initiation of therapy, the dose escalation strategy did not appear to compromise QOL unlike the standard dose administration

• These results potentially establish a new standard for optimizing regorafenib dosing through a dose escalation strategy

• A preemptive strategy with CL may decrease the risk of HFSR warranting further investigation

• Further data on PK analysis will be presented at a later meeting

CL, clobetasol; HFSR, hand-foot skin reaction; OS, overall survival; PK, pharmacokinetic; QOL, quality of life
MISMATCH REPAIR STATUS IN CRC
PEMBROLIZUMAB (ANTI–PD-1) IN MMRD CRC

• Eligibility for cohorts A and B:
 – Metastatic or locally advanced CRC, with or without dMMR (defined as: deficiency in MLH1, MSH2, MSH6 or PMS2 by IHC, or MSI in ≥ 2 loci by PCR)
 – ≥ 2 previous cancer therapy regimens
 – ECOG PS ≤ 1
 – No previous checkpoint inhibitor therapy

• Treatment: pembrolizumab 10 mg/kg Q2W

• MMR testing using standard PCR-based assay for detection of MSI

• Coprimary endpoints: immune-related ORR and the 20-week immune-related PFS

Cohort A (n=11) MMRD CRC
Cohort B (n=21) MMRP CRC
Cohort C (n=9) MMRD non-CRC

CRC, colorectal cancer; ECOG PS, Eastern Cooperative Oncology Group - performance status; ICH, Immunohistochemistry; MLH, MutL homolog 1; MMR, mismatch repair; MMRD, Mismatch repair deficient; MMRP, mismatch repair-proficient; MSH, MutS protein homolog; MSI, microsatellite instability; ORR, objective response rate; PCR, polymerase chain reaction; PFS, progression-free survival; PMS2, postmeiotic segregation increased 2 (Mismatch repair endonuclease); Q2W, every 2 weeks

PEMBROLIZUMAB IN MMRD/P CRC: EFFICACY

<table>
<thead>
<tr>
<th>Outcome</th>
<th>MMRD CRC (n=10)</th>
<th>MMRP CRC (n=18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median follow-up, months</td>
<td>9.3</td>
<td>6</td>
</tr>
<tr>
<td>ORR, % (95% CI)</td>
<td>40 (12-74)</td>
<td>0 (0-19)</td>
</tr>
<tr>
<td>Response, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• CR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>• PR</td>
<td>40 (0-100)</td>
<td>0</td>
</tr>
<tr>
<td>• SD (Wk 12)</td>
<td>50 (0-100)</td>
<td>11 (0-100)</td>
</tr>
<tr>
<td>• PD</td>
<td>10 (0-100)</td>
<td>61 (0-100)</td>
</tr>
<tr>
<td>• NE (no 12-wk scan)</td>
<td>0</td>
<td>28 (0-100)</td>
</tr>
<tr>
<td>Disease control rate, % (95% CI)</td>
<td>90 (55-100)</td>
<td>11 (1-35)</td>
</tr>
<tr>
<td>Median PFS, months (95% CI)</td>
<td>NR</td>
<td>2.2 (1.4-2.8)</td>
</tr>
<tr>
<td>Median OS, months (95% CI)</td>
<td>NR</td>
<td>5.0 (3.0-not estimable)</td>
</tr>
</tbody>
</table>

- MMRR status predicted clinical benefit of immune checkpoint blockade with pembrolizumab

CI, confidence intervals; CR, complete response; CRC, colorectal cancer; MMRD, Mismatch repair deficient; MMRP, mismatch repair-proficient; NE, not evaluated; NR, not reached; ORR, objective response rate; OS, overall survival; PD, progression disease; PR, partial response; SD, stable disease

PEMBROLIZUMAB IN 12 DIFFERENT TUMOR TYPES: SURVIVAL AND CLINICAL RESPONSE

86 patients enrolled

SLD, sum of longest diameters
PEmbrolizumab in 12 Different Tumor Types: PFS and OS

- Neither median PFS nor median OS has yet been reached
- Estimates of PFS at 1- and 2-years = 64% and 53%
- Estimates of OS at 1- and 2-years = 76% and 64%

→ MMRD cancer = sensitive to immune checkpoint blockade regardless of the cancers tissue of origin

MMRD, Mismatch repair deficient; OS, overall survival; PFS, progression-free survival
PHASE II CHECKMATE-142: NIVOLUMAB ± IPILIMUMAB IN MMRD/MSI-H mCRC: DESIGN AND ENDPOINTS

- 119 patients with MMRD/MSI-H mCRC treated with the following main eligibility criteria: ECOG PS= 0-1; disease progression after ≥1 prior systemic treatment including a fluoropyrimidine and oxaliplatin or irinotecan

- Primary endpoint: ORR per investigator (RECIST v1.1)
- Secondary endpoint: ORR per BIRC
- Exploratory endpoints: safety, tolerability, PFS, OS, biomarkers

BIRC, Blinded Independent Review Committee; CRC, colorectal cancer; ECOG PS, Eastern Cooperative Oncology Group - performance status; Ipi, Ipilimumab; mCRC, metastatic colorectal cancer; MMRD, mismatch repair deficiency; MSI-H, microsatellite instability high; Nivo, nivolumab; ORR, objective response rate; OS, overall survival;
PFS, progression-free survival: Q2W, every 2 weeks; Q3W, every 3 weeks; RECIST, Response evaluation criteria in solid tumors

PHASE II CHECKMATE-142: NIVOLUMAB ± IPILIMUMAB IN MMRD/MSI-H mCRC:
RESPONSE AND TREATMENT EXPOSURE

<table>
<thead>
<tr>
<th>Response</th>
<th>Nivo 3 mg/kg + Ipi 1 mg/kg (n=119)</th>
<th>Parameter</th>
<th>Nivo 3 mg/kg + Ipi 1 mg/kg (n=119)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR, % (95% CI)</td>
<td>55 (45.2-63.8)</td>
<td>Mean no. doses received</td>
<td>24 of Nivo 4 of Ipi</td>
</tr>
<tr>
<td>• CR, %</td>
<td>3</td>
<td>Continuing treatment, %</td>
<td>63</td>
</tr>
<tr>
<td>• PR, %</td>
<td>51</td>
<td>Discontinued treatment, %</td>
<td>37</td>
</tr>
<tr>
<td>• Stable disease, %</td>
<td>31</td>
<td>Reasons for discontinuation</td>
<td></td>
</tr>
<tr>
<td>• PD, %</td>
<td>12</td>
<td>• PD, %</td>
<td>19</td>
</tr>
<tr>
<td>• Not determined/reported, %</td>
<td>3</td>
<td>• TRAE, %</td>
<td>13</td>
</tr>
<tr>
<td>Median TTR, months (range)</td>
<td>2.8 (1-14)</td>
<td>• AE, unrelated to study drug, %</td>
<td>2</td>
</tr>
<tr>
<td>Median duration of response, months (range)</td>
<td>NR (NE-NE)</td>
<td>• Death, %</td>
<td>1</td>
</tr>
<tr>
<td>DCR for ≥ 12 wks, % (95% CI)</td>
<td>80 (71.5-86.6)</td>
<td>• Patient withdrawal, %</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Loss to follow-up, %</td>
<td>1</td>
</tr>
</tbody>
</table>

AE, adverse event; CI, confidence intervals; CR, complete response; CRC, colorectal cancer; DCR, disease control rate; Ipi, ipilimumab; MMRD, Mismatch repair deficient; MSI-H, microsatellite instability high; NE, not estimable; Nivo, nivolumab; NR, not reached; ORR, objective response rate; PD, progressive disease; PR, partial response; TRAE, treatment-related adverse event; TTR, time to response

NIVOLUMAB ± IPILIMUMAB IN MSI-H COLON CANCER: BEST REDUCTION IN TARGET LESION SIZE

Investigator-Assessed Response With Nivo Monotherapy (n = 74)
- ORR: 31%
- 62% of pts had a reduction in tumor burden from baseline
- Median TTR: 2.8 mos
- Median DoR: not reached; 83% (19/23) responses ongoing

Best Reduction in Target Lesion Size With Nivo + Ipi
- 80% of pts had a reduction in tumor burden from baseline

* Confirmed CR or PR per investigator

% Change truncated at 100

OPEN QUESTIONS IN MSI-H CRC

• Optimal pt selection?
 – PD-L1 expression levels?
 – Gene expression profile (TML)
• Monotherapy or combination with CTLA4 inhibitors?
• Duration of immunotherapy?
• Role of checkpoint inhibitors in the adjuvant setting?
• Enhancing role in MSS tumors

CRC, colorectal cancer; CTLA4, cytotoxic T-lymphocyte-associated protein 4; MSI-H, microsatellite instability high; MSS, microsatellite stable; PD-L1, Programmed death-ligand 1; TML, tumor mutational load
CRC: TREATMENT PARADIGM 2019

R SIDE: CHEMO + BEV

L SIDE: CHEMO + BEV OR ANTI-EGFR

MSI-H: IO TRIAL

BRAF-mut: FOLFOXIRI + Bev

CHEMO:
Plus BIOLOGIC
Anti-VEGF or Anti-EGFR

BRAF-mut:
Eco+Bin+Cet

Test HER-2 NTRK fusions

If BBP then:
FOLFIRI + anti-EGFR

HER-2 overexpressed:

➔ TRIAL

*May exclude EGFRi

TAS-102
Regorafenib as administrated in ReDOS

Phase 1
Other actionable mutation

BBP, bevacizumab beyond first progression; Bev, bevacizumab; Bin, binimetinib; Cet, cetuximab; CHEMO, chemotherapy; CRC, colorectal cancer; CTLA4, L side, Left side; Eco, encorafenib; EGFR, epidermal growth factor receptor; EGFRi, epidermal growth factor receptor inhibitor; FOLFIRI, 5-fluorouracil+leucovorin+irinotecan; FOLFOXIRI, 5-fluorouracil+leucovorin+irinotecan+oxaliplatin; MSI-H, microsatellite instability high; MSS, microsatellite stable; mut, mutant; NTRK, neutrophil tropomyosin receptor kinase; R side, right side; TAS-102, Trifluridine/tipiracil; VEGF, vascular endothelial growth factor
CONCLUSION

- Survival of patients with mCRC has significantly improved in the last decade
- Survival gains are not driven by advances in first-line therapy, but by incremental additions of effects of subsequent treatment lines
- In order to maximize outcomes, patients should receive all active agents
- Based on their tumor genomic profile, biomarker based therapies may result in improved patient outcomes
THANK YOU